CONTEST #4.

SOLUTIONS

4 - 1. **2** For the sum to be prime and also greater than 2, the sum must be odd. For 29 + P to be odd, P must be even. Since P is an even prime, P = 2.

4 - 2. $\lfloor (1, -2) \rfloor$ Because the solutions are *b* and *c*, the quadratic factors as $x^2 + bx + c = (x - b)(x - c)$. Expanding the right side yields $x^2 + bx + c = x^2 - (b + c)x + bc$. Comparing coefficients, $bc = c \rightarrow b = 1$, and $b = -b - c \rightarrow 1 = -1 - c \rightarrow c = -2$. The answer is (1, -2).

4 - **3**. **13** The third side must be greater than 11 - 7 = 4. The third side must be less than 7 + 11 = 18. The number of integers in the set $\{5, 6, 7, \dots, 17\}$ is **13**.

4 - 4. $\boxed{900}_{11}$ Because a triangle has exactly one area, $3 \cdot TH = 5 \cdot MH$. Also, notice that two of the altitudes are congruent, which means two of the sides are congruent. This implies that the altitude to \overline{TH} is a perpendicular bisector to \overline{TH} . Now, the Pythagorean Theorem yields $(TH/2)^2 + 3^2 = MH^2$, and substitution yields $\left(\frac{TH}{2}\right)^2 + 3^2 = \left(\frac{3TH}{5}\right)^2 \rightarrow \frac{TH^2}{4} + 9 = \frac{9TH^2}{25}$, which implies $(TH)^2 = \frac{900}{11}$.

4 - 5. 3 Use the change of base rule to rewrite the expression as $\frac{\log 60}{\log 30} + \frac{\log 75}{\log 30} + \frac{\log 6}{\log 30}$. Adding and using the product property of logs, we obtain $\frac{\log(60 \cdot 75 \cdot 6)}{\log 30}$. Next, rewrite this as $\frac{\log(30^3)}{\log 30} = \frac{3\log 30}{\log 30} = 3$.

4 - 6. -2 and $10 \pm 2\sqrt{35}$ [need all three] The quadratic equation will have a single root if its discriminant is zero, so solve $k^2 - 4(k+2)(5) = 0$ to obtain $k = 10 \pm 2\sqrt{35}$. However, the equation will also have exactly one solution if the quadratic coefficient is zero and the linear coefficient is not, as happens if k = -2. There are three solutions: -2 and $10 \pm 2\sqrt{35}$.

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com

T-1. In $\triangle ABC$, the sides have lengths 5 cm, 12 cm, and 13 cm. A circle is inscribed in $\triangle ABC$. Compute the area of the circle in sq cm.

T-1Sol. 4π Because the lengths of the sides satisfy the Pythagorean Theorem, $\triangle ABC$ is right. The area of $\triangle ABC$ is $\frac{5 \cdot 12}{2} = 30$. The area of a triangle is equal to the product of its inradius and its semiperimeter, so $30 = r \cdot 15$ implies r = 2. The area of the incircle is $\pi \cdot 2^2 = 4\pi$.

T-2. For real numbers x and y, suppose x + y = 5 and $x \cdot y = 3$. Compute $x^4 + y^4$. **T-2Sol. 343** Factor to obtain $x^4 + y^4 = (x + y)^4 - 4x^3y - 6x^2y^2 - 4xy^3$, which is equivalent to $(x + y)^4 - 6(xy)^2 - 4xy(x^2 + y^2) = (x + y)^4 - 6(xy)^2 - 4xy((x + y)^2 - 2xy)$. The value of $x^4 + y^4$ is $5^4 - 6 \cdot 3^2 - 4 \cdot 3 \cdot (5^2 - 2 \cdot 3) = 625 - 54 - 228 =$ **343**.

T-3. Suppose that for some real x, $\cos(\sin^{-1}(\cos(\tan^{-1}x))) = \frac{1}{x}$. Compute x^2 . **T-3Sol.** $\boxed{\frac{1+\sqrt{5}}{2}}$ First, note that $\cos(\tan^{-1}x) = \frac{1}{\sqrt{1+x^2}}$ and that $\cos(\sin^{-1}u) = \sqrt{1-u^2}$. Therefore, the left-hand side of the given equation simplifies to $\sqrt{1-\frac{1}{1+x^2}}$. Setting this equal to $\frac{1}{x}$ and solving yields $\frac{x^2}{1+x^2} = \frac{1}{x^2} \to 1+x^2 = x^4$, and this is a quadratic equation in x^2 . Solving, $x^2 = \frac{1+\sqrt{5}}{2}$ (rejecting the negative value of x^2).

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com