CONTEST \#4.

SOLUTIONS

4-1. $\mathbf{2}$ For the sum to be prime and also greater than 2 , the sum must be odd. For $29+P$ to be odd, P must be even. Since P is an even prime, $P=\mathbf{2}$.

4-2. (1,-2) Because the solutions are b and c, the quadratic factors as $x^{2}+b x+c=(x-b)(x-c)$. Expanding the right side yields $x^{2}+b x+c=x^{2}-(b+c) x+b c$. Comparing coefficients, $b c=c \rightarrow b=1$, and $b=-b-c \rightarrow 1=-1-c \rightarrow c=-2$. The answer is $(1,-2)$.

4-3. 13 The third side must be greater than $11-7=4$. The third side must be less than $7+11=18$. The number of integers in the set $\{5,6,7, \cdots, 17\}$ is $\mathbf{1 3}$.

4-4. $\frac{\mathbf{9 0 0}}{\mathbf{1 1}}$ Because a triangle has exactly one area, $3 \cdot T H=5 \cdot M H$. Also, notice that two of the altitudes are congruent, which means two of the sides are congruent. This implies that the altitude to $\overline{T H}$ is a perpendicular bisector to $\overline{T H}$. Now, the Pythagorean Theorem yields $(T H / 2)^{2}+3^{2}=M H^{2}$, and substitution yields $\left(\frac{T H}{2}\right)^{2}+3^{2}=\left(\frac{3 T H}{5}\right)^{2} \rightarrow \frac{T H^{2}}{4}+9=\frac{9 T H^{2}}{25}$, which implies $(T H)^{2}=\frac{\mathbf{9 0 0}}{\mathbf{1 1}}$.

4-5. 3 Use the change of base rule to rewrite the expression as $\frac{\log 60}{\log 30}+\frac{\log 75}{\log 30}+\frac{\log 6}{\log 30}$. Adding and using the product property of logs, we obtain $\frac{\log (60 \cdot 75 \cdot 6)}{\log 30}$. Next, rewrite this as $\frac{\log \left(30^{3}\right)}{\log 30}=\frac{3 \log 30}{\log 30}=\mathbf{3}$.

4-6. -2 and $\mathbf{1 0} \pm \mathbf{2} \sqrt{35}$ [need all three] The quadratic equation will have a single root if its discriminant is zero, so solve $k^{2}-4(k+2)(5)=0$ to obtain $k=10 \pm 2 \sqrt{35}$. However, the equation will also have exactly one solution if the quadratic coefficient is zero and the linear coefficient is not, as happens if $k=-2$. There are three solutions: $\mathbf{- 2}$ and $\mathbf{1 0} \pm \mathbf{2} \sqrt{\mathbf{3 5}}$.

T-1. In $\triangle A B C$, the sides have lengths $5 \mathrm{~cm}, 12 \mathrm{~cm}$, and 13 cm . A circle is inscribed in $\triangle A B C$. Compute the area of the circle in sq cm .
T-1Sol. 4π Because the lengths of the sides satisfy the Pythagorean Theorem, $\triangle A B C$ is right. The area of $\triangle A B C$ is $\frac{5 \cdot 12}{2}=30$. The area of a triangle is equal to the product of its inradius and its semiperimeter, so $30=r \cdot 15$ implies $r=2$. The area of the incircle is $\pi \cdot 2^{2}=4 \pi$.

T-2. For real numbers x and y, suppose $x+y=5$ and $x \cdot y=3$. Compute $x^{4}+y^{4}$.
T-2Sol. 343 Factor to obtain $x^{4}+y^{4}=(x+y)^{4}-4 x^{3} y-6 x^{2} y^{2}-4 x y^{3}$, which is equivalent to $(x+y)^{4}-6(x y)^{2}-4 x y\left(x^{2}+y^{2}\right)=(x+y)^{4}-6(x y)^{2}-4 x y\left((x+y)^{2}-2 x y\right)$. The value of $x^{4}+y^{4}$ is $5^{4}-6 \cdot 3^{2}-4 \cdot 3 \cdot\left(5^{2}-2 \cdot 3\right)=625-54-228=\mathbf{3 4 3}$.

T-3. Suppose that for some real $x, \cos \left(\sin ^{-1}\left(\cos \left(\tan ^{-1} x\right)\right)\right)=\frac{1}{x}$. Compute x^{2}.
T-3Sol. $\frac{1+\sqrt{5}}{2}$ First, note that $\cos \left(\tan ^{-1} x\right)=\frac{1}{\sqrt{1+x^{2}}}$ and that $\cos \left(\sin ^{-1} u\right)=\sqrt{1-u^{2}}$.
Therefore, the left-hand side of the given equation simplifies to $\sqrt{1-\frac{1}{1+x^{2}}}$. Setting this equal to $\frac{1}{x}$ and solving yields $\frac{x^{2}}{1+x^{2}}=\frac{1}{x^{2}} \rightarrow 1+x^{2}=x^{4}$, and this is a quadratic equation in x^{2}. Solving, $x^{2}=\frac{1+\sqrt{5}}{2}$ (rejecting the negative value of x^{2}).

